可变精度粗糙集模型在远程开放教育中的应用*

 

吴兵1,2 叶春明1

 

1.上海理工大学 管理学院,上海200093

2.上海电视大学,上海200433

 

【摘要】开放远程教育是一个新兴的教学组织方式,它有信息密集型和知识管理型的特点。在知识管理时代,面对庞大的教学规模,教学管理者迫切希望从大量的信息中获得有效的知识来辅助管理,从而提高教学管理效率和水平。本文构建了一个基于关系演算的可变精度粗糙集模型,探索开放教育学习者成绩信息的知识发现。通过在真实数据上的算法实验,表明这个模型克服了传统粗糙集的不足,是一个有效的算法改进。实验获得了关于学习者成绩的初步知识规则,为学校的管理工作指明了方向,并且就学校的知识管理工作进行了有效的尝试。

【关键词】知识管理;数据挖掘;粗糙集;可变精度;远程开放教育;学生成绩分析

【中图分类号】G728

【文献标识码】A

【文章编号】1007-2179200906-0088-08

【作者简介】吴兵,博士研究生,上海电视大学讲师,上海理工大学管理学院,研究方向:管理信息系统、数据挖掘技术、多代理技术(wbing@shtvu.edu.cn);叶春明,教授、博士生导师,上海理工大学管理学院,研究方向:管理信息系统、工业工程、ERP

*基金项目:本文系上海市教育委员会资助课题(项目编号:04SB02)“基于网络的远程开放教育考试成绩综合分析管理智能决策支持系统”、上海市教育委员会资助课题(项目编号:06ZZ91)“网上互交互环节的BDI体系的研究与实现”的课题成果之一。

 

 

Application Research in the Field of ODL Performance

Analysis of Variable Precision Rough Set Based on

Relational Model

 

WU Bing 1,2 & YE Chunming1

 

1.College of Management, University of Shanghai for Science and Technology, Shanghai 200093,China; 2.Shanghai TV University, Shanghai 200433,China

 

Abstract: Open and Distance Education is a growing model of teaching. It has certain characteristics of intensive information use and knowledge management. In the age of knowledge management, and faced with rapid growth of the scale of teaching, administrators are eager to gain knowledge through large amount of data to improve decision making, management efficiency and teaching effectiveness. In this paper, we propose a model of variable precision rough set based on relational operations.  Through applications in the field of ODL performance and experiment with empirical data, the model has proved to be an effective algorithm as it has overcome the shortages of the traditional Rough Set Model. Furthermore, through related experiments, we also gain some elementary knowledge principles regarding the ODL students' learning outcomes, which is not only an effective attempt of knowledge management in ODL organizations, but also indicates the direction for future work.

Key words: knowledge management; data mining; rough set; variable precision; ODL

暂无评论
评论
昵称:
内容: